Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 63
1.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38612615

The post-COVID condition (PCC) is a pathology stemming from COVID-19, and studying its pathophysiology, diagnosis, and treatment is crucial. Neuroinflammation causes the most common manifestations of this disease including headaches, fatigue, insomnia, depression, anxiety, among others. Currently, there are no specific management proposals; however, given that the inflammatory component involves cytokines and free radicals, these conditions must be treated to reduce the current symptoms and provide neuroprotection to reduce the risk of a long-term neurodegenerative disease. It has been shown that cannabis has compounds with immunomodulatory and antioxidant functions in other pathologies. Therefore, exploring this approach could provide a viable therapeutic option for PCC, which is the purpose of this review. This review involved an exhaustive search in specialized databases including PubMed, PubChem, ProQuest, EBSCO, Scopus, Science Direct, Web of Science, and Clinical Trials. Phytocannabinoids, including cannabidiol (CBD), cannabigerol (CBG), and Delta-9-tetrahydrocannabinol (THC), exhibit significant antioxidative and anti-inflammatory properties and have been shown to be an effective treatment for neuroinflammatory conditions. These compounds could be promising adjuvants for PCC alone or in combination with other antioxidants or therapies. PCC presents significant challenges to neurological health, and neuroinflammation and oxidative stress play central roles in its pathogenesis. Antioxidant therapy and cannabinoid-based approaches represent promising areas of research and treatment for mitigating adverse effects, but further studies are needed.


COVID-19 , Cannabis , Hallucinogens , Neurodegenerative Diseases , Humans , Post-Acute COVID-19 Syndrome , Antioxidants/therapeutic use , Neuroinflammatory Diseases , COVID-19/complications , Cannabinoid Receptor Agonists
2.
Acta Neurobiol Exp (Wars) ; 84(1): 51-58, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38587324

Levetiracetam (LEV) is a drug commonly used as an anticonvulsant. However, recent evidence points to a possible role as an antioxidant. We previously demonstrated the antioxidant properties of LEV by significantly increasing catalase and superoxide dismutase activities and decreasing the hydrogen peroxide (H2O2) levels in the hippocampus of rats with temporal lobe epilepsy (TLE) showing scavenging properties against the hydroxyl radical. The aim of the present work was to evaluate, the effect of LEV on DNA oxidation, by determining 8­hydroxy­2­deoxyguanosine (8­OHdG) levels, and glutathione content, through reduced (GSH) and oxidized (GSSG) glutathione levels, in the hippocampus of rats with TLE. Male Wistar rats were assigned to the control (CTRL), CTRL+LEV, epileptic (EPI) and EPI+LEV groups. TLE was induced using the lithium­pilocarpine model. Thirteen weeks after TLE induction, LEV was administered for one week through osmotic pumps implanted subcutaneously. The determination of 8­OHdG, GSH and GSSG levels were measured using spectrophotometric methods. We showed that LEV alone significantly increased 8­OHdG and GSSG levels in the hippocampus of control rats compared to those in epileptic condition. No significant differences in GSH levels were observed. LEV could induce changes in the hippocampus increasing DNA oxidation and GSSG levels under nonepileptic condition but not protecting against the mitochondrial dysfunction observed in TLE probably by mechanisms related to changes in chromatin structure, neuroinflammation and alterations in redox components.


Epilepsy, Temporal Lobe , Epilepsy , Piracetam , Male , Rats , Animals , Levetiracetam/adverse effects , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy , Piracetam/adverse effects , Antioxidants/therapeutic use , Glutathione Disulfide/adverse effects , Hydrogen Peroxide/adverse effects , Rats, Wistar , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Glutathione/metabolism , Oxidation-Reduction
3.
Cir Cir ; 91(6): 824-828, 2023.
Article En | MEDLINE | ID: mdl-38096868

OBJECTIVE: Determine the effectiveness of endoscopy in cochlear implantation as compared to microscopy. METHOD: Study comparing microscopy and endoscopy in cochlear implant placement in 34 patients (23 endoscopic implants and 20 implants via microscopy), between 2014 and 2019, at the Centro Medico Naval, Mexico City. The study was performed under informed consent and according to the Council for International Organizations of Medical Sciences (CIOMS). RESULTS: Of the 34 patients, 12 were children or adolescents and 22 were adults. The visualization of the round window classified via microscopy per St. Thomas Hospital's classification showed that type IIB prevailed in 30.2% of patients, and type III in 41.9%, and when using the endoscope, the round window was observed in full in 82.6% of patients (type I), and type IIA was only observed in 17.4% (four patients). The number of attempts made to place the cochlear implant was greater with the microscope. The time to insertion of the electrode was 1.6 minutes. No differences were observed (p > 0.05) in the number of inpatient days. Cochleostomy was more frequent when using the microscope. CONCLUSIONS: Endoscopy is an effective resource in cochlear implantation for posterior tympanotomy, with no complications observed, offering greater safety in inserting the electrode through the round window.


OBJETIVO: Determinar la efectividad de la endoscopía en la implantación coclear en comparación con la técnica microscópica. MÉTODO: Se comparó la microscopía frente a la endoscopía en la colocación de implante coclear en 34 pacientes (23 endoscópicos y 20 microscópicos), del año 2014 al año 2019, en el Centro Médico Naval de la Ciudad de México. El estudio se realizó bajo consentimiento informado y apegado a las normas del Council for International Organizations of Medical Sciences. RESULTADOS: De los 34 pacientes, 12 eran niños o adolescentes y 22 eran adultos. La visualización de la ventana redonda fue clasificada con microscopio según la clasificación del St. Thomas Hospital, predominando la tipo IIB (30.2%) y la III (41.9%), y al utilizar el endoscopio se observó completa en el 82.6% (tipo I) y tipo IIA en tan solo el 17.4% (cuatro pacientes). El número de intentos en la colocación del implante coclear fue mayor con el microscopio. El tiempo en el que se insertó el electrodo fue de 1.6 minutos. No hubo diferencias (p > 0.05) en la estancia hospitalaria. Fue más frecuente la cocleostomía cuando se uso el microscopio. CONCLUSIONES: La endoscopía es un instrumento efectivo en la implantación coclear por timpanotomía posterior, sin presentarse complicaciones y dando mayor seguridad para insertar el electrodo por la ventana redonda.


Cochlear Implantation , Cochlear Implants , Child , Adult , Adolescent , Humans , Round Window, Ear/surgery , Endoscopy, Gastrointestinal , Mexico
4.
RSC Adv ; 13(36): 25118-25128, 2023 Aug 21.
Article En | MEDLINE | ID: mdl-37614784

Because of the high economic cost of exploring the experimental impact of mutations occurring in kinase proteins, computational approaches have been employed as alternative methods for evaluating the structural and energetic aspects of kinase mutations. Among the main computational methods used to explore the affinity linked to kinase mutations are docking procedures and molecular dynamics (MD) simulations combined with end-point methods or alchemical methods. Although it is known that end-point methods are not able to reproduce experimental binding free energy (ΔG) values, it is also true that they are able to discriminate between a better or a worse ligand through the estimation of ΔG. In this contribution, we selected ten wild-type and mutant cocrystallized EGFR-inhibitor complexes containing experimental binding affinities to evaluate whether MMGBSA or MMPBSA approaches can predict the differences in affinity between the wild type and mutants forming a complex with a similar inhibitor. Our results show that a long MD simulation (the last 50 ns of a 100 ns-long MD simulation) using the MMGBSA method without considering the entropic components reproduced the experimental affinity tendency with a Pearson correlation coefficient of 0.779 and an R2 value of 0.606. On the other hand, the correlation between theoretical and experimental ΔΔG values indicates that the MMGBSA and MMPBSA methods are helpful for obtaining a good correlation using a short rather than a long simulation period.

5.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article En | MEDLINE | ID: mdl-37373348

Dopamine (DA) and dopamine agonists (DA-Ag) have shown antiangiogenic potential through the vascular endothelial growth factor (VEGF) pathway. They inhibit VEGF and VEGF receptor 2 (VEGFR 2) functions through the dopamine receptor D2 (D2R), preventing important angiogenesis-related processes such as proliferation, migration, and vascular permeability. However, few studies have demonstrated the antiangiogenic mechanism and efficacy of DA and DA-Ag in diseases such as cancer, endometriosis, and osteoarthritis (OA). Therefore, the objective of this review was to describe the mechanisms of the antiangiogenic action of the DA-D2R/VEGF-VEGFR 2 system and to compile related findings from experimental studies and clinical trials on cancer, endometriosis, and OA. Advanced searches were performed in PubMed, Web of Science, SciFinder, ProQuest, EBSCO, Scopus, Science Direct, Google Scholar, PubChem, NCBI Bookshelf, DrugBank, livertox, and Clinical Trials. Articles explaining the antiangiogenic effect of DA and DA-Ag in research articles, meta-analyses, books, reviews, databases, and clinical trials were considered. DA and DA-Ag have an antiangiogenic effect that could reinforce the treatment of diseases that do not yet have a fully curative treatment, such as cancer, endometriosis, and OA. In addition, DA and DA-Ag could present advantages over other angiogenic inhibitors, such as monoclonal antibodies.


Endometriosis , Neoplasms , Osteoarthritis , Female , Humans , Dopamine Agonists/pharmacology , Dopamine/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Endometriosis/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Neoplasms/metabolism , Adjuvants, Immunologic/therapeutic use , Osteoarthritis/drug therapy , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism
6.
Curr Neuropharmacol ; 21(10): 2110-2125, 2023.
Article En | MEDLINE | ID: mdl-37326113

The Coronavirus disease 2019 (COVID-19) affects several tissues, including the central and peripheral nervous system. It has also been related to signs and symptoms that suggest neuroinflammation with possible effects in the short, medium, and long term. Estrogens could have a positive impact on the management of the disease, not only due to its already known immunomodulator effect, but also activating other pathways that may be important in the pathophysiology of COVID-19, such as the regulation of the virus receptor and its metabolites. In addition, they can have a positive effect on neuroinflammation secondary to pathologies other than COVID-19. The aim of this study is to analyze the molecular mechanisms that link estrogens with their possible therapeutic effect for neuroinflammation related to COVID-19. Advanced searches were performed in scientific databases as Pub- Med, ProQuest, EBSCO, the Science Citation index, and clinical trials. Estrogens have been shown to participate in the immune modulation of the response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to this mechanism, we propose that estrogens can regulate the expression and activity of the Angiotensin-converting enzyme 2 (ACE2), reestablishing its cytoprotective function, which may be limited by its interaction with SARS-CoV-2. In this proposal, estrogens and estrogenic compounds could increase the synthesis of Angiotensin-(1-7) (Ang-(1-7)) that acts through the Mas receptor (MasR) in cells that are being attacked by the virus. Estrogens can be a promising, accessible, and low-cost treatment for neuroprotection and neuroinflammation in patients with COVID-19, due to its direct immunomodulatory capacity in decreasing cytokine storm and increasing cytoprotective capacity of the axis ACE2/Ang (1-7)/MasR.


COVID-19 , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Renin-Angiotensin System/physiology , Peptidyl-Dipeptidase A/metabolism , Neuroinflammatory Diseases , Estrogens/therapeutic use , Neuroprotection , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use
7.
Biomedicines ; 11(3)2023 Mar 10.
Article En | MEDLINE | ID: mdl-36979827

Epilepsy is a neurological disorder in which it has been shown that the presence of oxidative stress (OS) is implicated in epileptogenesis. The literature has shown that some antiseizure drugs (ASD) have neuroprotective properties. Levetiracetam (LEV) is a drug commonly used as an ASD, and in some studies, it has been found to possess antioxidant properties. Because the antioxidant effects of LEV have not been demonstrated in the chronic phase of epilepsy, the objective of this study was to evaluate, for the first time, the effects of LEV on the oxidant-antioxidant status in the hippocampus of rats with temporal lobe epilepsy (TLE). The in vitro scavenging capacity of LEV was evaluated. LEV administration in rats with TLE significantly increased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, but did not change glutathione peroxidase (GPx) activity, and significantly decreased glutathione reductase (GR) activity in comparison with epileptic rats. LEV administration in rats with TLE significantly reduced hydrogen peroxide (H2O2) levels but did not change lipoperoxidation and carbonylated protein levels in comparison with epileptic rats. In addition, LEV showed in vitro scavenging activity against hydroxyl radical (HO•). LEV showed significant antioxidant effects in relation to restoring the redox balance in the hippocampus of rats with TLE. In vitro, LEV demonstrated direct antioxidant activity against HO•.

8.
Pharmaceutics ; 15(2)2023 Feb 18.
Article En | MEDLINE | ID: mdl-36840015

Dopamine (DA), its derivatives, and dopaminergic drugs are compounds widely used in the management of diseases related to the nervous system. However, DA receptors have been identified in nonneuronal tissues, which has been related to their therapeutic potential in pathologies such as sepsis or septic shock, blood pressure, renal failure, diabetes, and obesity, among others. In addition, DA and dopaminergic drugs have shown anti-inflammatory and antioxidant properties in different kinds of cells. AIM: To compile the mechanism of action of DA and the main dopaminergic drugs and show the findings that support the therapeutic potential of these molecules for the treatment of neurological and non-neurological diseases considering their antioxidant and anti-inflammatory actions. METHOD: We performed a review article. An exhaustive search for information was carried out in specialized databases such as PubMed, PubChem, ProQuest, EBSCO, Scopus, Science Direct, Web of Science, Bookshelf, DrugBank, Livertox, and Clinical Trials. RESULTS: We showed that DA and dopaminergic drugs have emerged for the management of neuronal and nonneuronal diseases with important therapeutic potential as anti-inflammatories and antioxidants. CONCLUSIONS: DA and DA derivatives can be an attractive treatment strategy and a promising approach to slowing the progression of disorders through repositioning.

9.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article En | MEDLINE | ID: mdl-36834984

The ongoing pandemic of COVID-19 has caused more than 6.7 million tragic deaths, plus, a large percentage of people who survived it present a myriad of chronic symptoms that last for at least 6 months; this has been named as long COVID. Some of the most prevalent are painful symptoms like headache, joint pain, migraine, neuropathic-like pain, fatigue and myalgia. MicroRNAs are small non-coding RNAs that regulate genes, and their involvement in several pathologies has been extensively shown. A deregulation of miRNAs has been observed in patients with COVID-19. The objective of the present systematic review was to show the prevalence of chronic pain-like symptoms of patients with long COVID and based on the expression of miRNAs in patients with COVID-19, and to present a proposal on how they may be involved in the pathogenic mechanisms of chronic pain-like symptoms. A systematic review was carried out in online databases for original articles published between March 2020 to April 2022; the systematic review followed the PRISMA guidelines, and it was registered in PROSPERO with registration number CRD42022318992. A total of 22 articles were included for the evaluation of miRNAs and 20 regarding long COVID; the overall prevalence of pain-like symptoms was around 10 to 87%, plus, the miRNAs that were commonly up and downregulated were miR-21-5p, miR-29a,b,c-3p miR-92a,b-3p, miR-92b-5p, miR-126-3p, miR-150-5p, miR-155-5p, miR-200a, c-3p, miR-320a,b,c,d,e-3p, and miR-451a. The molecular pathways that we hypothesized to be modulated by these miRNAs are the IL-6/STAT3 proinflammatory axis and the compromise of the blood-nerve barrier; these two mechanisms could be associated with the prevalence of fatigue and chronic pain in the long COVID population, plus they could be novel pharmacological targets in order to reduce and prevent these symptoms.


COVID-19 , Chronic Pain , MicroRNAs , Post-Acute COVID-19 Syndrome , Humans , Chronic Pain/genetics , COVID-19/complications , COVID-19/genetics , MicroRNAs/genetics , Post-Acute COVID-19 Syndrome/genetics
10.
Neurol India ; 70(5): 1879-1886, 2022.
Article En | MEDLINE | ID: mdl-36352582

Pain is a well-recognized and important non-motor manifestation in Parkinson disease (PD). Painful or unpleasant sensations in PD can be classified as musculoskeletal, dystonia, akathisia, radicular, and central or primary pain; the last two are associated with neuropathic pain. Particularly, neuropathic pain in PD has not been fully clarified; therefore, it goes somewhat unnoticed, and the affected patients do not receive adequate pain treatment. The main purpose of this literature review was to identify the incidence of neuropathic pain in PD and the involvement of dopamine of this type of pain by the integration of different lines of investigation. In this review, a search was conducted using PubMed, ProQuest, EBSCO, Medline, EMBASE, and the Science Citation index for studies evaluating pain in patients with PD. The inclusion criteria were as follows: original articles that evaluated incidence and possible mechanism of neuropathic, central, and radicular pain in PD. Nine studies related to the incidence of neuropathic pain in PD suggest the activation of cerebral areas, such as the cortex, striatum, amygdala, thalamus, raphe nuclei, and locus coeruleus. Neuropathic pain is related to altered levels of dopamine, serotonin, and norepinephrine; these neurotransmitters are related to the sensitive and emotional dimensions of pain. Dopamine could cause hypersensitivity to pain, either indirectly through modulatory effects on affective pain processing and/or directly by affecting the neural activity in key areas of the brain that modulate pain. A considerable proportion of patients with PD suffer neuropathic pain; however, it has been disregarded, this has led to an inability to achieve an adequate treatment and a decrease in pain to improve the quality of life of these patients. We consider that neuropathic pain in PD is possibly induced by neurophysiological changes due to the degradation of dopaminergic neurons.


Neuralgia , Parkinson Disease , Humans , Parkinson Disease/therapy , Dopamine , Quality of Life/psychology , Neuralgia/epidemiology , Neuralgia/etiology , Pain Management
11.
Cells ; 11(19)2022 10 07.
Article En | MEDLINE | ID: mdl-36231114

Transcription factor EB (TFEB) is considered the master transcriptional regulator of autophagy and lysosomal biogenesis, which regulates target gene expression through binding to CLEAR motifs. TFEB dysregulation has been linked to the development of numerous pathological conditions; however, several other lines of evidence show that TFEB might be a point of convergence of diverse signaling pathways and might therefore modulate other important biological processes such as cellular senescence, DNA repair, ER stress, carbohydrates, and lipid metabolism and WNT signaling-related processes. The regulation of TFEB occurs predominantly at the post-translational level, including phosphorylation, acetylation, SUMOylating, PARsylation, and glycosylation. It is noteworthy that TFEB activation is context-dependent; therefore, its regulation is subjected to coordinated mechanisms that respond not only to nutrient fluctuations but also to stress cell programs to ensure proper cell homeostasis and organismal health. In this review, we provide updated insights into novel post-translational modifications that regulate TFEB activity and give an overview of TFEB beyond its widely known role in autophagy and the lysosomal pathway, thus opening the possibility of considering TFEB as a potential therapeutic target.


Autophagy , Lysosomes , Autophagy/genetics , Carbohydrates , Gene Expression Regulation , Lysosomes/metabolism , Phosphorylation
12.
Antioxidants (Basel) ; 11(10)2022 Oct 01.
Article En | MEDLINE | ID: mdl-36290695

Obesity remains a global health problem. Chronic low-grade inflammation in this pathology has been related to comorbidities such as cognitive alterations that, in the long term, can lead to neurodegenerative diseases. Neuroinflammation or gliosis in patients with obesity and type 2 diabetes mellitus has been related to the effect of adipokines, high lipid levels and glucose, which increase the production of free radicals. Cerebral gliosis can be a risk factor for developing neurodegenerative diseases, and antioxidants could be an alternative for the prevention and treatment of neural comorbidities in obese patients. AIM: Identify the immunological and oxidative stress mechanisms that produce gliosis in patients with obesity and propose antioxidants as an alternative to reducing neuroinflammation. METHOD: Advanced searches were performed in scientific databases: PubMed, ProQuest, EBSCO, and the Science Citation index for research on the physiopathology of gliosis in obese patients and for the possible role of antioxidants in its management. CONCLUSION: Patients with obesity can develop neuroinflammation, conditioned by various adipokines, excess lipids and glucose, which results in an increase in free radicals that must be neutralized with antioxidants to reduce gliosis and the risk of long-term neurodegeneration.

13.
J Comput Aided Mol Des ; 36(9): 653-675, 2022 09.
Article En | MEDLINE | ID: mdl-35934747

Angiotensin-(1-7) re-balance the Renin-Angiotensin system affected during several pathologies, including the new COVID-19; cardiovascular diseases; and cancer. However, one of the limiting factors for its therapeutic use is its short half-life, which might be overcome with the use of dendrimers as nanoprotectors. In this work, we addressed the following issues: (1) the capacity of our computational protocol to reproduce the experimental structural features of the (hydroxyl/amino)-terminated PAMAM dendrimers as well as the Angiotensin-(1-7) peptide; (2) the coupling of Angiotensin-(1-7) to (hydroxyl/amino)-terminated PAMAM dendrimers in order to gain insight into the structural basis of its molecular binding; (3) the capacity of the dendrimers to protect Angiotensin-(1-7); and (4) the effect of pH changes on the peptide binding and covering. Our Molecular-Dynamics/Metadynamics-based computational protocol well modeled the structural experimental features reported in the literature and our double-docking approach was able to provide reasonable initial structures for stable complexes. At neutral pH, PAMAM dendrimers with both terminal types were able to interact stably with 3 Angiotensin-(1-7) peptides through ASP1, TYR4 and PRO7 key amino acids. In general, they bind on the surface in the case of the hydroxyl-terminated compact dendrimer and in the internal zone in the case of the amino-terminated open dendrimer. At acidic pH, PAMAM dendrimers with both terminal groups are still able to interact with peptides either internalized or in its periphery, however, the number of contacts, the percentage of coverage and the number of hydrogen bonds are lesser than at neutral pH, suggesting a state for peptide release. In summary, amino-terminated PAMAM dendrimer showed slightly better features to bind, load and protect Angiotensin-(1-7) peptides.


COVID-19 , Dendrimers , Amino Acids , Angiotensin I , Dendrimers/chemistry , Humans , Molecular Dynamics Simulation , Peptide Fragments , Peptides
15.
Curr Top Med Chem ; 22(16): 1307-1325, 2022.
Article En | MEDLINE | ID: mdl-35578850

Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme that regulates energy metabolism mainly through the pentose phosphate pathway (PPP). It is well known that this enzyme participates in the antioxidant/oxidant balance via the synthesis of energy-rich molecules: nicotinamide adenine dinucleotide phosphate reduced (NADPH), the reduced form of flavin adenine dinucleotide (FADH) and glutathione (GSH), controlling reactive oxygen species generation. Coronavirus disease 19 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a public health problem that has caused approximately 4.5 million deaths since December 2019. Concerning the role of G6PD in COVID-19 development, it is known from the existing literature that G6PD-deficient patients infected with SARS-CoV-2 are more susceptible to thrombosis and hemolysis, suggesting that G6PD deficiency facilitates infection by SARS-CoV-2. Concerning G6PD and neuropathology, it has been observed that deficiency of this enzyme is also present with an increase in oxidative markers. Concerning the role of G6PD and the neurological manifestations of COVID-19, it has been reported that the enzymatic deficiency in patients infected with SARSCoV- 2 exacerbates the disease, and, in some clinical reports, an increase in hemolysis and thrombosis was observed when patients were treated with hydroxychloroquine (OH-CQ), a drug with oxidative properties. In the present work, we summarize the evidence of the role of G6PD in COVID- 19 and its possible role in the generation of oxidative stress and glucose metabolism deficits, and inflammation present in this respiratory disease and its progression including neurological manifestations.


COVID-19 , Glucosephosphate Dehydrogenase , COVID-19/metabolism , COVID-19/pathology , Glucosephosphate Dehydrogenase/metabolism , Glutathione/metabolism , Hemolysis , Humans , Oxidative Stress , SARS-CoV-2
16.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 13.
Article En | MEDLINE | ID: mdl-35455472

Epilepsy is a chronic disease that affects millions of people worldwide. Antiepileptic drugs (AEDs) are used to control seizures. Even though parts of their mechanisms of action are known, there are still components that need to be studied. Therefore, the search for novel drugs, new molecular targets, and a better understanding of the mechanisms of action of existing drugs is still crucial. Levetiracetam (LEV) is an AED that has been shown to be effective in seizure control and is well-tolerable, with a novel mechanism of action through an interaction with the synaptic vesicle protein 2A (SV2A). Moreover, LEV has other molecular targets that involve calcium homeostasis, the GABAergic system, and AMPA receptors among others, that might be integrated into a single mechanism of action that could explain the antiepileptogenic, anti-inflammatory, neuroprotective, and antioxidant properties of LEV. This puts it as a possible multitarget drug with clinical applications other than for epilepsy. According to the above, the objective of this work was to carry out a comprehensive and integrative review of LEV in relation to its clinical uses, structural properties, therapeutical targets, and different molecular, genetic, and systemic action mechanisms in order to consider LEV as a candidate for drug repurposing.

17.
Curr Top Med Chem ; 22(16): 1326-1345, 2022.
Article En | MEDLINE | ID: mdl-35382723

The global pandemic caused by the SARS-CoV-2 virus began in early 2020 and is still present. The respiratory symptoms caused by COVID-19 are well established. However, neurological manifestations that may result from direct or indirect neurological damage after SARS-CoV-2 infection have been reported frequently. The main proposed pathophysiological processes leading to neurological damage in COVID-19 are cerebrovascular disease and indirect inflammatory/ autoimmune origin mechanisms. A growing number of studies confirm that neuroprotective measures should be maintained in COVID-19 patients. On the other hand, cannabinoids have been the subject of various studies that propose them as potentially promising drugs in chronic neurodegenerative diseases due to their powerful neuroprotective potential. In this review, we addresses the possible mechanism of action of cannabinoids as a neuroprotective treatment in patients infected by SARS-CoV-2. The endocannabinoid system is found in multiple systems within the body, including the immune system. Its activation can lead to beneficial results, such as a decrease in viral entry, a reduction of viral replication, and a reduction of pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α, or IFN-c through CB2R expression induced during inflammation by SARS-CoV-2 infection in the central nervous system.


COVID-19 Drug Treatment , Cannabinoids , Neuroprotective Agents , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Pandemics , SARS-CoV-2
18.
Curr Top Med Chem ; 22(16): 1346-1368, 2022.
Article En | MEDLINE | ID: mdl-35366776

Vitamin D is a hormone involved in the regulation of important biological processes such as signal transduction, immune response, metabolic regulation and also in the nervous and vascular systems. To date, coronavirus disease 2019 (COVID-19) infection does not have a specific treatment. However, various drugs have been proposed, including those that attenuate the intense inflammatory response, and recently, the use of vitamin D, in clinical trials, as part of the treatment of COVID-19 has provided promising results. It has been observed in some clinical studies that the use of cholecalciferol (vitamin D3) and its two metabolites the circulating form, calcidiol or calcifediol (25-hydroxycalciferol, 25-(OH)-D), and the active form, calcitriol (1,25-(OH)2-D), in different doses, improve the clinical manifestations, prognosis, and survival of patients infected with COVID-19 probably because of its anti-inflammatory, antiviral and lung-protective action. In relation to the central nervous system (CNS) it has been shown, in clinical studies, that vitamin D is beneficial in some neurological and psychiatric conditions because of its anti-inflammatory and antioxidant properties, modulation of neurotransmitters actions, and regulation of calcium homeostasis between other mechanisms. It has been shown that COVID-19 infection induces CNS complications such as headache, anosmia, ageusia, neuropathy, encephalitis, stroke, thrombosis, cerebral hemorrhages, cytotoxic lesions, and psychiatric conditions and it has been proposed that the use of dietary supplements, as vitamin and minerals, can be adjuvants in this disease. In this review, the evidence of the possible role of vitamin D, and its metabolites, as a protector against the neurological manifestations of COVID-19 was summarized.


COVID-19 Drug Treatment , Vitamin D , Calcifediol/therapeutic use , Cholecalciferol , Humans , Neuroprotection , Vitamin D/metabolism , Vitamin D/pharmacology , Vitamin D/therapeutic use , Vitamins/pharmacology , Vitamins/therapeutic use
19.
Antioxidants (Basel) ; 10(6)2021 Jun 17.
Article En | MEDLINE | ID: mdl-34204362

Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is an emergent infectious disease that has caused millions of deaths throughout the world. COVID-19 infection's main symptoms are fever, cough, fatigue, and neurological manifestations such as headache, myalgias, anosmia, ageusia, impaired consciousness, seizures, and even neuromuscular junctions' disorders. In addition, it is known that this disease causes a series of systemic complications such as adverse respiratory distress syndrome, cardiac injury, acute kidney injury, and liver dysfunction. Due to the neurological symptoms associated with COVID-19, damage in the central nervous system has been suggested as well as the neuroinvasive potential of SARS-CoV-2. It is known that CoV infections are associated with an inflammation process related to the imbalance of the antioxidant system; cellular changes caused by oxidative stress contribute to brain tissue damage. Although anti-COVID-19 vaccines are under development, there is no specific treatment for COVID-19 and its clinical manifestations and complications; only supportive treatments with immunomodulators, anti-vascular endothelial growth factors, modulating drugs, statins, or nutritional supplements have been used. In the present work, we analyzed the potential of antioxidants as adjuvants for the treatment of COVID-19 and specifically their possible role in preventing or decreasing the neurological manifestations and neurological complications present in the disease.

20.
JBRA Assist Reprod ; 25(3): 422-427, 2021 07 21.
Article En | MEDLINE | ID: mdl-34286939

OBJECTIVE: Our study aims to evaluate the various correlations between demographic, biochemical, ultrasound, and ovarian stimulation parameters with the percentage of mature oocytes in conventional stimulation for IVF/ICSI cycles in order to develop a predictive model to improve our understanding of the oocyte maturation process. METHODS: This is a retrospective cohort study; patients underwent conventional antagonist ovarian stimulation protocols for fresh IVF/ICSI cycles. A total of 256 IVF/ICSI cycles were included. Age, antral follicle count (AFC), baseline serum follicle-stimulating hormone (FSH) levels, baseline serum luteinizing hormone (LH) levels, baseline serum estradiol (E2) levels, peak estradiol, P4 on hCG day, the body mass index (BMI), and stimulation length were measured. The variables were tested for correlations with the number of retrieved oocytes (#RO) and the number of mature oocytes (#MO). A backward stepwise regression was performed to identify the variables that correlated more strongly with percentage of mature oocytes (%MO). RESULTS: A predictive equation was obtained with the variables that were not excluded in the model. % MO = 72.700 - 0.910 (Age) + 0.979 (BMI) + 1.209 (Baseline serum LH) - 0.647 (Progesterone on human Chorionic Gonadotropin day). CONCLUSIONS: We concluded that age, the BMI, baseline serum LH, and progesterone level on hCG day may predict %MO. Prospective studies are required to validate this predictive equation.


Ovulation Induction , Sperm Injections, Intracytoplasmic , Chorionic Gonadotropin , Estradiol/blood , Female , Fertilization in Vitro , Follicle Stimulating Hormone/blood , Humans , Luteinizing Hormone/blood , Oocytes , Retrospective Studies
...